3 research outputs found

    The development and evaluation of extracellular vesicles as a biocompatible anti-infective drug delivery system

    Get PDF
    Approximately 700,000 people worldwide die from infections with antimicrobial-resistant bacteria annually. Extracellular vesicles (EVs) can help to delay or even prevent the development of this resistance by releasing high concentrations of antimicrobial agents specifically at the site of infection. In this context, vesicles derived from immune cells and myxobacteria were tested for the use as anti-infective drug delivery systems. Five main research objects were investigated: i) characterization of the vesicles, ii) storage stability iii) biocompatibility, iv) uptake in bacteria and cells and v) their antimicrobial activity against bacterial pathogens. The vesicles exhibited sufficient stability and showed exceptional biocompatibility with low endotoxin levels, minor cytokine release by primary immune cells and no toxicity in zebrafish larvae. Vesicles were taken up into bacteria, cells and the epithelial layer of a 3D gastrointestinal co-culture model. An inherent antibacterial effect against Escherichia coli was observed with vesicles derived from Cystobacter velatus. Non-inherently active vesicles were successfully loaded with a broad-spectrum antibiotic, which thus inhibited the growth of Shigella flexneri. The findings in this work demonstrate the exceptional properties of EVs to treat infections and provide the foundation for a successful translation towards clinical application.Weltweit sterben jĂ€hrlich ca. 700.000 Menschen an einer Infektion mit antimikrobiell resistenten Bakterien. ExtrazellulĂ€re Vesikel (EVs) können dazu beitragen, die Entwicklung der Resistenzen zu verzögern oder gar zu verhindern, indem sie gezielt am Ort der Infektion hohe Konzentrationen an antimikrobiellen Wirkstoffen freisetzen. In diesem Zusammenhang wurden Vesikel, von Immunzellen und Myxobakterien, auf ihre Verwendung als antiinfektive Wirkstofftransportsysteme getestet. FĂŒnf Hauptforschungspunkte wurden untersucht: i) Charakterisierung der Vesikel, ii) StabilitĂ€t iii) BiokompatibilitĂ€t, iv) Aufnahme in Bakterien und Zellen und v) ihre antimikrobielle AktivitĂ€t gegenĂŒber Pathogenen. Die Vesikel wiesen eine ausreichende StabilitĂ€t auf und zeigten hohe BiokompatibilitĂ€t mit niedrigen Endotoxinwerten, geringer Zytokinfreisetzung durch primĂ€re Immunzellen und keine ToxizitĂ€t in Zebrafischlarven. Die Vesikel wurden in Bakterien, Zellen und in die Epithelschicht eines 3D-Gastrointestinalen Kokulturmodells aufgenommen. Eine inhĂ€rente antibakterielle Wirkung gegen Escherichia coli wurde mit Vesikeln von Cystobacter velatus beobachtet. Nicht inhĂ€rent aktive Vesikel wurden erfolgreich mit einem Breitspektrum-Antibiotikum beladen, welche so das Wachstum von Shigella flexneri hemmten. Die Ergebnisse dieser Arbeit weisen auf die außergewöhnlichen Eigenschaften von EVs zur Behandlung von Infektionen und bilden die Grundlage fĂŒr eine erfolgreiche Translation in die klinische Anwendung

    Cell-Derived Vesicles for Antibiotic Delivery-Understanding the Challenges of a Biogenic Carrier System

    Get PDF
    Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs’ technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro–in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B-lymphoid cells with low immunogenicity and from non-pathogenic myxobacteria SBSr073 are introduced here. A large-scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three-dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics
    corecore